r	eport form (For Student)						
Name	SIRIPORN KONGSOI						
Laboratory	Division of Bioresources, Hokkaido University Research Center for Zoonosis Control						
Year (Grade)	4 th year PhD student						
Place of practice	Veterinary Diagnostic Service, Faculty of Veterinary Medicine, Kasetsart University,						
	Kamphaeng Saen District, Nakhon Pathom, Thailand, 73140						
Period of practice	20 April – 22 May 2015						
Purpose	Field epidemiology on the prevalence of mutations within the quinolone						
	resistance-determining region of gyrA, gyrB, parC, and parE and association with						
	antibiotic resistance in quinolone-resistant Salmonella enterica in diseased swine.						

Overseas Practice on (Field Epidemiology · Collaborative Research)

2015/06/10 (Year/Month/Day)

Salmonella spp. comprises one of the most important bacterial-zoonotic pathogens, causing acute food-borne diseases in humans, and is recognized as a major public health problem. Although contaminated eggs and raw or undercooked poultry are the primary sources of salmonellosis in humans, pork causes an estimated 15-20% of all cases. While contamination can occur during any process along the food production line, infected pigs on the farm are the origin of the contaminated pork that leads to human infections. Pig farmers routinely use antibiotics for both treatment and prophylactic purposes. Excessive and incorrect uses of antibiotics are probably a primary cause of increasing bacterial resistance. There is a concern for the development of resistant Salmonella that may pass to people through the food chain and can produce untreatable disease. For example, a Salmonella strain of pig origin with decreased susceptibility to quinolones caused a severe outbreak of salmonellosis in Denmark where two people died (Mølbak et al., 1999). In salmonellae, DNA gyrase is the primary target of quinolone action. A single point mutation in the quinolone resistance-determining region (QRDR) of gyrA can mediate resistance to the non-fluorinated quinolone nalidixic acid and reduced susceptibility to fluoroquinolones such as ciprofloxacin. Mutations in the gyrB and topoisomerase IV genes parC and parE are considered rare in salmonellae. It was hypothesized that those isolates with decreased susceptibility harbored a single mutation in gyrA, whereas resistant isolates would contain two or more mutations in gyrA and/or gyrB and/or parC and/or parE.

The objectives of this study were to characterize *Salmonella* spp. by phenotyping and serotyping characterizations. In addition, quinolones susceptibility profile and the presence of mutations in the QRDR of chromosomal *gyrA*, *gyrB*, *parC* and *parE* genes were assessed. The flow of study was shown in Figure 1.

Figure 1. Study flow for isolation and identification, susceptibility testing and DNA extraction

Isolation and identification. *Salmonella* isolates from different swine organs were collected from 8 diseased swine, as shown in Figure 2, from Veterinary Diagnostic Service, Faculty of Veterinary Medicine, Kasetsart University during the 20 April – 22 May 2015. *Salmonella* isolates (n=91) were identified and confirmed to be *Salmonella* on the basis of biochemical reactions on triple sugar iron agar, urea and lysine. The summarized results were shown in Table 1.

Table 1. The summarized results of biochemical testing and susceptibility testing

					Biochemical results					
Isolation no.	Organ origin	Selective media				NA		CIP		Stock no.
			TSI	Lysine	Urea	mm.	Resistant phenotype	mm.	Resistant phenotype	
M272-XLD1	Intestine	XLD	K/A H ₂ S+	+		23	s	36	s	1
M272-XLD2	MSLN	XLD	K/A H ₂ S+	+		23	s	36	s	2
M272-XLD3	MSLN	XLD	K/A H ₂ S+	+		23	s	36	s	3
M272-XLD4	MSLN	XLD	K/A H ₂ S+	+		22	s	35	s	4
M272-XLD5	MSLN	XLD	K/A H ₂ S+	+		25	s	35	s	5
M272-XLD6	MSLN	XLD	K/A H ₂ S+	+		24	s	36	s	б
M272-SS7	MSLN	SS	K/A H ₂ S+	+		22	s	36	s	7
M272-SS8	MSLN	SS	K/A H ₂ S+	+		22	s	36	s	8
M272-SS9	MSLN	SS	K/A H ₂ S+	+		22	s	35	s	9
M272-SS10	MSLN	SS	K/A H ₂ S+	+		22	s	36	s	10
M272-SS11	MSLN	SS	K/A H ₂ S+	+		23	s	35	s	11
M284-XLD1	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	12
M284-XLD2	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	13

			Biochemical results				М						
Isolation no.	Organ origin	Selective media	Selective media	Selective media	Selective media		-			NA		CIP	Stock no.
			181	Lysine	Urea		Resistant phenotype	mm	Resistant phenotype				
M284-XLD3	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	14			
M284-XLD4	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	15			
M284-XLD5	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	16			
M284-SS6	Lung	SS	K/A H ₂ S-	+		0	R	17	R	17			
M284-SS7	Lung	SS	K/A H ₂ S-	+		0	R	18	R	18			
M284-SS8	Lung	SS	K/A H ₂ S-	÷		0	R	20	R	19			
M284-SS9	Lung	SS	K/A H ₂ S-	+		0	R	20	R	20			
M284-SS10	Lung	SS	K/A H ₂ S-	+		0	R	18	R	21			
M284-XLD11	Spleen	XLD	K/A H ₂ S-	+		0	R	18	R	22			
M284-XLD12	Spleen	XLD	K/A H ₂ S-	+		0	R	19	R	23			
M284-XLD13	Spleen	XLD	K/A H ₂ S-	+		0	R	18	R	24			
M284-XLD14	Spleen	XLD	K/A H ₂ S-	+		0	R	17	R	25			
M284-XLD15	Spleen	XLD	K/A H ₂ S-	+		0	R	19	R	26			

Hokkaido University Program for Leading Graduate Schools Fostering Global Leader in Veterinary Science for contributing to One Health

			Biochemical results				М			
Isolation no.	Organ origin	Selective media				NA		CIP		Stock no.
			TSI	Lysine	Urea		Resistant phenotype	mm.	Resistant phenotype	
M284-XLD16	Spleen	SS	K/A H₂S∙	+		0	R	19	R	27
M284-XLD17	Spleen	SS	K/A H₂S-	÷		0	R	19	R	28
M284-XLD18	Spleen	SS	K/A H₂S-	÷		0	R	20	R	29
M284-XLD19	Spleen	SS	K/A H₂S-	+		0	R	19	R	30
M284-XLD20	Spleen	SS	K/A H₂S-	÷		0	R	18	R	31
M286-XLD1	Lung	XLD	K/A H₂S-	+		0	R	19	R	32
M286-XLD2	Lung	XLD	K/A H₂S-	+		0	R	18	R	33
M286-XLD3	Lung	XLD	K/A H₂S-	+		0	R	21	I	34
M286-XLD4	Lung	XLD	K/A H₂S-	+	-	0	R	19	R	35
M286-XLD5	Lung	XLD	K/A H₂S-	+		0	R	19	R	36
M286-SS6	Lung	ss	K/A H ₂ S-	+		0	R	20	R	37
M286-SS7	Lung	SS	K/A H₂S-	+		0	R	19	R	38
M286-SS8	Lung	SS	K/A H ₂ S-	+		0	R	18	R	39

			Biochemical results				м			
Isolation no.	Organ origin	Selective media					NA		CIP	Stock no.
			181	Lysine	Urea	mm.	Registent phenotype	mm.	Registent phenotype	
M286-889	Lung	SS	K/A H ₂ S-	+		0	R	20	R	40
M286-SS10	Lung	SS	K/A H ₂ S-	+		0	R	20	R	41
M287-XLD1	Spleen	XLD	K/A H ₂ S-	+		0	R	20	R	42
M287-XLD2	Spleen	XLD	K/A H ₂ S-	+		0	R	20	R	43
M287-XLD3	Spleen	XLD	K/A H ₂ S-	+		0	R	19	R	44
M287-XLD4	Spleen	XLD	K/A H ₂ S-	+		0	R	19	R	45
M287-XLD5	Spleen	XLD	K/A H ₂ S-	+		0	R	18	R	46
M287-SS6	Spleen	SS	K/A H ₂ S-	+		0	R	17	R	47
M287-SS7	Spleen	SS	K/A H ₂ S-	+		0	R	20	R	48
M287-SS8	Spleen	SS	K/A H ₂ S-	+		0	R	20	R	49
M287-889	Spleen	SS	K/A H ₂ S-	+		0	R	19	R	50
M287-SS10	Spleen	SS	K/A H₂S-	+		0	R	20	R	51
M415-XLD1	Lung	XLD	K/A H ₂ S+	+	-	18	I	24	I	52

Hokkaido University Program for Leading Graduate Schools Fostering Global Leader in Veterinary Science for contributing to One Health

			Bio	Biochemical results			М			
Isolation no.	Isolation no. Organ origin	Selective media				NA		CIP		Stock no.
			TSI	Lysine	Urea	mm.	Resistant phenotype	mm.	Resistant phenotype	
M415-XLD2	Lung	XLD	K/A H ₂ S+	+	-	17	I	24	I	53
M415-XLD3	Lung	XLD	K/A H ₂ S+	+		18	I	25	I	54
M415-XLD4	Lung	XLD	K/A H ₂ S+	+		17	I	23	I	55
M415-XLD5	Lung	XLD	K/A H ₂ S+	+		17	I	23	I	56
M415-SS6	Lung	SS	K/A H ₂ S+	+		18	I	27	I	57
M415-SS7	Lung	SS	K/A H ₂ S+	+		17	I	26	I	58
M415-SS8	Lung	SS	K/A H ₂ S+	+		17	I	22	I	59
M415-SS9	Lung	SS	K/A H ₂ S+	+		18	I	26	I	60
M415-SS10	Lung	SS	K/A H ₂ S+	+		18	I	27	I	61
M457-XLD1	Intestine	XLD	K/A H ₂ S+	+		17	I	22	I	62
M457-XLD2	Intestine	XLD	K/A H ₂ S+	+		18	I	23	I	63
M457-XLD3	Intestine	XLD	K/A H ₂ S+	+		18	I	23	I	64
M457-XLD4	Intestine	XLD	K/A H ₂ S+	+		17	I	23	I	65

			Biochemical results				М			
Isolation no.	Organ origin	Selective media	TSI			NA		CIP		Stock no.
				Lysine	Urea	mm	Registent phenotype	mm	Resistant phenotype	
M457-XLD5	Intestine	XLD	K/A H ₂ S+	÷		18	I	23	I	66
M457-SS6	Intestine	SS	K/A H ₂ S+	+		18	I	22	I	67
M457-887	Intestine	SS	K/A H ₂ S+	+		18	I	23	I	68
M457-SS8	Intestine	SS	K/A H ₂ S+	+		18	I	21	I	69
M462-XLD8	MSLN	XLD	K/A H ₂ S-	+		0	R	19	R	70
M462-XLD9	MSLN	XLD	K/A H ₂ S-	+		0	R	18	R	71
M462-XLD10	MSLN	XLD	K/A H ₂ S-	+		0	R	18	R	72
M462-XLD11	MSLN	XLD	K/A H ₂ S-	+		0	R	20	R	73
M462-XLD12	MSLN	XLD	K/A H ₂ S-	+		0	R	20	R	74
M462-SS1	MSLN	SS	K/A H ₂ S+	+		18	I	28	I	75
M462-SS2	MSLN	SS	K/A H ₂ S+	+		18	I	50	I	76
M462-SS3	MSLN	SS	K/A H ₂ S-	+		0	R	19	R	77
M462-884	MSLN	SS	K/A H ₂ S-	÷	-	0	R	19	R	78

Hokkaido University Program for Leading Graduate Schools

Fostering Global Leader in Veterinary Science for contributing to One Health

		Bio	Biochemical results			М				
Isolation no.	Organ origin	Selective media				NA		CIP		Stock no.
			TSI	Lysine	Urea	mm.	Registant phenotype	mm.	Resistant phenotype	
M462-SS5	MSLN	SS	K/A H ₂ S-	+	-	0	R	19	R	79
M462-SS6	MSLN	SS	K/A H ₂ S-	+	-	0	R	19	R	80
M462-SS7	MSLN	SS	K/A H ₂ S-	+	-	0	R	20	R	81
M463-XLD1	Lung	XLD	K/A H ₂ S-	+	-	0	R	20	R	82
M463-XLD2	Lung	XLD	K/A H ₂ S-	÷	-	0	R	20	R	83
M463-XLD3	Lung	XLD	K/A H ₂ S-	+	-	0	R	20	R	84
M463-XLD4	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	85
M463-XLD5	Lung	XLD	K/A H ₂ S-	+		0	R	20	R	86
M463-SS1	Lung	SS	K/A H ₂ S-	+		0	R	20	R	87
M463-SS2	Lung	SS	K/A H ₂ S-	+		0	R	18	R	88
M463-SS3	Lung	ss	K/A H ₂ S-	+		0	R	18	R	89
M463-SS4	Lung	ss	K/A H₂S-	+		0	R	20	R	90
M463-885	Lung	ss	K/A H ₂ S-	+		0	R	20	R	91

Figure 2. The total number of isolates was collected from 8 diseased swine in different organs.

Quinolones susceptibility testing. Susceptibility testing was performed by the disk diffusion method according to CLSI standards (Clinical and Laboratory Standards Institute, M31-A3, ANONYM., 2012) for the following antimicrobial agents: nalidixic acid (30 ug) and ciprofloxacin (5ug). *E. coli* ATCC 25922, was used as control strains (Figure 3). Figure 4 and Figure 5 shows the susceptibility pattern of nalidixic acid and ciprofloxacin, respectively.

Figure 3. Disk diffusion method and the criteria for interpretive the susceptibility pattern.

Figure 4. Nalidixic susceptibility pattern in *Salmonella* isolates from each organ (R-resistant, I-intermediate and S-susceptible).

Ciprofloxacin susceptibility in each organ

Figure 5. Ciprofloxacin susceptibility pattern in *Salmonella* isolates from each organ (R-resistant, I-intermediate and S-susceptible).

DNA extraction. DNA extraction using centrifugation and boiling method, cell pellets were resuspended in 0.1 ml of TE buffer and were centrifuged at 15,000g for 10 min. Pellets were resuspended in 40 μ l of TE buffer, subjected to boiling at 100°C in heat box for 10 min, cooled on ice, centrifuged at 15,000g for 10 s, and stored at -20°C until used.

(Field Epidemiology • Collaborative Research) Evaluation by supervisor

Institution • Official title • Name	印					
	Professor, Research Center for Zoonosis Control					
Enough number of isolates of Salmonella species was obtained by Ms. Kongsoi's hard working. The data on the						
quinolone resistance might contribute to the control of salmonellosis among pigs.						

XI Send the electronic file to the Leading School section, International Affairs Office, also submit the original print out with seal of supervisor to the Leading School section, International Affairs Office.

*2 The Steering Committee of the Leading Program will first confirm the content of this report and the report will be forwarded to the Educational Affairs Committee for credits evaluation.

Submit to : Leading School section, International Affairs Office

Ext: 9545 e-mail: leading@vetmed.hokudai.ac.jp