Regulation of Cardiac Electrical Activity by Lysine Deacetylation

Kaikobad Irani, MD

Division of Cardiology University of Iowa Carver College of Medicine Iowa City, IA, USA Kaikobad-irani@uiowa.edu

The voltage gated cardiac Na^+ channel ($Na_v1.5$), encoded by the *SCN5A* gene, conducts the inward depolarizing cardiac Na^+ current (I_{Na}) and is vital for cardiac electrical activity. Inherited loss of function mutations in *SCN5A* are associated with cardiac conduction disorders. Here we show that the SIRTUIN1 lysine deacetylase (SIRT1) stimulates I_{Na} and trafficking of $Na_v1.5$ to the plasma membrane via deacetylation of $Na_v1.5$ on lysine 1479 (K1479). Deficiency of cardiac SIRT1 in mice induces K1479 hyperacetylation on $Na_v1.5$, precipitates conduction abnormalities, phenocopies human cardiac arrhythmias associated with loss of function of $Na_v1.5$, and leads to premature death. Therefore, SIRT1-dependent dynamic lysine acetylation of $Na_v1.5$ governs I_{Na} , cardiac electrical activity, and cardiac rhythm.